INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 3007-3020

Micromechanics of composite materials using multivariable
finite element method and homogenization theory

Huiyu Sun *®*, Shenglin Di , Nong Zhang ®, Changchun Wu °

& Faculty of Engineering, University of Technology, No 1, Broadway, Sydney, NSW 2007, Australia
b Department of Modern Mechanics, University of Science and Technology of China, Anhui 230027, People’s Republic of China

Received 22 September 1999; in revised form 18 January 2000

Abstract

A new method for evaluation of the micro-mechanical properties of composite materials via incompatible multi-
variable FEM and homogenization theory is proposed in this paper. An incompatible displacement element and a
hybrid stress element are developed and extended to predict the effective mechanical properties of composite materials.
The mechanical performances obtained by these elements are compared with the experimental data as well as the results
by Mori-Tanaka theory and traditional rule-of-mixtures. It turns out that the proposed new method provides with the
best results comparing to the experimental results. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Multivariable finite element method; Homogenization theory; Incompatible element; Hybrid element; Composite materials;
Mechanical properties

1. Introduction

More and more composite materials are being used in a variety of industries now. One common problem
in the mechanics of composites is to establish rational microstructural model and to determine effective
properties for a composite from the distribution and properties of constituent. Furthermore, the properties
of a hypothetical composite could be required in order to make early design decisions and to tailor a
composite for specific application.

Many researchers (Hashin, 1983) have extensively addressed the effective properties for linear elastic
composites. Based on the Eshelby-Mori-Tanaka theory, Zhao and Weng (1990) derived nine effective
elastic constants of an orthotropic composite reinforced with monotonically aligned elliptic cylinders, and
the five elastic moduli of a transversely isotropic composite reinforced with two-dimensional randomly-
oriented elliptic cylinders. These moduli are given in terms of the cross-sectional aspect ratio and the
volume fraction of the elliptic cylinders. In the approach using homogenized theory developed by Lene and
Leguillon (1982), Lene (1986) and Jansson (1992), a unit cell problem governing effective mechanical
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properties for composites with periodic micro-structure has been derived by employing an asymptotic
expansion of the field variables in two length scales. Numerical computations using a finite element method
are performed on a fiber reinforced material. Since the displacement field is interpolated with isoparametric
elements, selective reduced integration has to be used to avoid locking (Jansson, 1992).

The most well-known drawback of conventional method is, based on the principle of minimum potential
energy, the displacement elements behave always over stiffened. In the case of a beam subjected to bending
and shear, a poor computational result is obtained with the compatible element. For nearly incompressible
material, the conventional displacement element fails to reasonably simulate the structural deformation. In
the case of composite laminates, the continuous interlaminar shear stress is hard to attain by the dis-
placement element (Phan and Reddy, 1985). For both theoretical research and engineering practice, it is
worthwhile to devote on developing alternative approaches for both linear and nonlinear applications.

Since Pian (1964) first presented the hybrid stress element, 5f-1, the theory and application of hybrid
elements have been greatly developed. Pian and Sumihara (1984) introduced the incompatible displace-
ments into the Reissner principle and imposed the element internal equilibrium conditions in a variational
sense to improve the stress expansions. A new hybrid element, 55-II, with excellent qualities has been
obtained. In the derivation, however, some perturbation treatments have to be applied. An optimizing
condition for hybrid elements was offered by Wu et al. (1987), and a new approach for developing optimal
stress patterns was presented. With this approach, a more general resultant element, 55-I11, was established
without any treatment of experiences or perturbations. The optimized hybrid model shows a superior
numerical behavior (Di et al., 1989), e.g., (1) it passed the patch test. (2) In comparison with 4-node dis-
placement element, the presented method yields more ideal results for both stresses and displacements
without any locking phenomena. (3) The optimized hybrid element is not sensitive to mesh distortion. (4)
There are no false shears, no zero energy modes.

In order to overcome the intrinsic deficiency of isoparametric finite element, in this paper, the incom-
patible element and hybrid element are constructed and applied to modeling the minimum repetitive unit
cell of composite materials. Both of the elements can satisfy the patch test condition, and the optimized
hybrid element meets the match condition for multivariable parameters of the finite element.

2. Governing equations

Considering a heterogeneous elastomer with periodic structures, it consists of two components, Fig. 1.
This body has two length scales, a global length scale D that is of the order of the body size, and a local
length scale d that is proportional to the wavelength of the variation of the micro-structure. The size of the
unit cell is further assumed to be much smaller than the size of the body. The relation between the global
coordinate system x; for the body and the local system y; for the minimum repeated unit cell can then be
written as
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(a) elastic body Q° (b) unit cell Y

Fig. 1. Elastic body and representative unit cell.
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Xi
Yi _;7 (1)

where ¢ is the scaling factor between the two length scales. For actual heterogeneous body, when it is
subjected to external forces, the field quantities such as displacement and stress, will vary with the global
coordinate system x. In the meanwhile, because of the nonlinearity of microstructure, the field quantities
will vary rapidly with the neighborhood of ¢ within a short wavelength. The unknown stress (o;;), strain (e;;)
and displacement (1) can be solved from the equilibrium equation, geometric equation and physical
equation:

o +fi=0 ing 2)
e, =1(u; +u;) in 3)
0 = Ciuey in (4)

and boundary conditions

otn; =T, onl%, (5)

ij

where f; is the body force, C;y; is the stiffness matrix of the material, n; is the outward normal vector of the
boundary, 7; is the given external force on the boundary I’ and #; is the given displacement on the
boundary I

3. Asymptotic expansion

We look for an asymptotic expansion of u¢ as follows:

uzg(x) :u?(XVy)+é’uzl(x7y)+é’2u,2(xay)+7 (7)
where the functions u?, u!, u?, ..., are Y-periodic with respect to y. The strain e;; (1) can be expanded as
() = 7l el e 4 ®
where
() (0)
e(.._l) = 1 aui + auj (9)
! 2\ oy )’
() 0 ] (0
RONEY U o, U o, (10)
v 2 axj ax,' @yj ay, ’
(1) O] @ 2
) _ 1[0y +6uj +6ui +6uj . (an
v 2 a)Cj ax,« @y, ay,

Substituting the above equations into the constitutive equation (4), the expansion of the stress oj; can be
obtained,

. =¢ 0. )—|—og)>+£a§!)+...7 (12)
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where
oV = Cyuel " (x,y), (13)
o) = Cyuely (x,), (14)
o) = Cyuey) (x,9). (15)

Inserting Eq. (12) into the equilibrium equation (2), the following equations are deduced since the terms in
front of & should be zeros:

oY
V=0, 16
3, (16)
06 stV
ij i _o 17
o, o (17)
o¢'V gl
ij ij = 0. 18
o, o, + /i (18)
Using Eq. (13), Eq. (16) can be expressed as
0 1] _
aiyj |:Cijklek/ :| =0. (19)
From formulae (9) and (13), we have
V=0, o= (20)
From Eq. (9), ufm is independent of y, i.e.,
0 (x,y) = u” (x). (21)
Inserting expression (14) in Eq. (17), expression (10) can be rewritten as
eﬁj(-)) = ey (u,@) + ey (ufl)), (22)
where
1o oul 1o oulV
() == i J (D) =2 i . 23
exz] (ul ) 2( @xj * ax,- ’ ey{/ (ul ) 2 ayj * ay, ( )
Then,
0 oC;;
-~ » (1) _ ijkl (0)
y; |:C1]k1 €yl (Hl )} a Exkl (ul ) (24)
From the right-hand form of formula (24), ul(-') may be written as
) (r.9) = 2 (e (1 () ). (25)

where #¥(y) is a Y-periodic function defined in the unit cell Y. Substituting the equation for ul(l) (25) into
Eq. (22), there is
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el = eaa (") [T + e ()] (26)
where
Akl Oyt
€yij (/fd> = (a/;lj + @_]j,— ) (27)

T is a fourth-order unit tensor. And 7} = 1/2(840; + 649), where d;; is the Kronecker delta symbol. So
expression (14) can be written as

0510) = Cijmn [Tnln + €ymn (/dd)jl €xkl (ul(O)) . (2’8)

If ¢ tends to be zero, the first two terms are considered in formula (12). Referring to formula (20), the stress
in Q° is

0t =0 = Copmn [T + ey (1) €t (u<0)) (29)
For any Y-periodic function @ = ®(x,y), the average in the domain Y is defined as follows:
d) = % / &(x,y)dY. (30)
The average of o ) in the domain Y is written as
<Ug‘))> = Cfsz Cxkl (”50))a (31)
where
Uk] \Y| / l/mn Tk[ + €ymn (/{; )] dy. (32)

The elastic constant Cszz defined above is independent of y. It is called homogenized equivalent elastic
constant.

4. Finite element method implementation

To obtain the homogenized elastic constant, it is necessary to solve for x¥, which is satisfied with
equation (24), i.e.,
0

)
o, [Cirr et (17)] + 5= (Cijur) = 0. (33)

) y;

It is evident that »*' is generalized displacement, and 9/ 6y]( ; ,k,) is generalized force.
0
/ ay; [Ciiewa (4") + Cim] dY =0 Vo € Q. (34)
y O)j

Eq. (34) can be integrated by decomposition, then

0 ) 0
/ 67 [(Cijkl €kl (Xfl) + C;jk[)(P] dY — / [Cijkl €3kl ()dd) —+ Cijkl] aﬁ dY =0. (35)
y O)j Y Y,

J

Use of the divergence theorem gives
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Fig. 2. Finite element mesh on a unit cell.

/ [Cijwr et (1) + Cyu] €;5(@)dY =0, (36)
Y
1e.,
/ Cimrewi (17 )es(@)dY = — / Cijurej(@)dY. (37)
Y Y

For the case of two dimensions, the unit cell of composite materials is idealized as shown in Fig. 2. It is
meshed by quadrilateral elements with four corner nodes.

4.1. Isoparametric finite element

With the isoparametric element adopted, the displacement in the element is interpolated as the function
of nodal displacements.

4
u= ZN,‘”,‘, (38)
=1
where N; is the shape function. Imposing the geometric relation upon expression (25) induces
e(u) = e(x)e("™), (39)
e(y) is equivalent to generalized strain:
e(y) = By, (40)

where B is the strain matrix, and ¢ is the nodal displacement of the element.
From formula (37), the discrete equation for finite element can be written as follows:

Kq =P, (41)

where
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1 1
K= / / BT CBhJ dédy, (42)
-1.J-1

P= /1 /1BTCthéd11, (43)
and / is the thickness of the element, J is the determinant of Jacobian matrix.
4.2. Incompatible finite element
Based upon the general formulation of incompatible functions (Wu et al., 1987), the NQ6 incompatible

element is generated and adopted in this paper. The incompatible parts of the displacement are introduced
as follows:

ul )ul

Ui * * )"2

u Wy Ny N; 00 0 077

u=<{ v =[Nl NIy NIy NJ;]{ . ¢+[0 O Ny Nfj 0 0 ;‘3
w ' 0 0 0 0 N N )“4

U4 ‘5

W4 )\,6

= Ng+ N*2, (44)

where
2(J J
* 2 1 2
Ny = (1—C)+§(70§—J—O'1>7

2(J J
M= (=) -3 (e 2a).

(45)

L is the third-order unit square matrix. N; and N; are the shape functions of incompatible displacements of
the element NQ6. 4 denotes displacement parameters in the element. Jy, J; and J, are parameters associated
with the nodal coordinates of the element. After the geometric relation is introduced, there is

e=(DN)q+ (DN*)i = Bq+ B/, (46)

where D denotes the differential operator in the relationship between the strain and displacement. Based on
the potential principle of incompatible system, formula (37) can be written in the variational form:

= UV (54"B" +52"B") C(Bq + B2) d¥ +/

ye

(5qTBT + MTET) CdV} : (47)

where V¢ denotes the volume of every element in the domain Y. By using the extreme value condition, the
following equations are derived:

(/ BTCBdV>q+ (/ BTCEdV)z:—/ B'Ccdr,

ve ve ve

</ ETCBdV>q+ </ ETCEdv)A:_/ B Cav.
ye Ve ye

It can be written in the form of matrix, i.e.,

(48)
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o wl{f- 1R ®
From the second line of the above formula, A can be expressed in terms of ¢. Then, the stiffness equation of
incompatible element is obtained.

(Kyy— K, K;'K;))g=P,— K,K,P,. (50)
Considering that the equivalent nodal force of the element should not account for the effect of the in-

compatible shape function N* (Wu and Pian, 1997), the stiffness equation (50) is revised.
(qu—inK;11Kiq)q:Pq' (51)

4.3. Hybrid stress element

According to the Hellinger—Reissner variational principle, the energy functional of the incompatible
discrete system can be expressed as

1

IT-%{ [ | - 30"s0+a"ou) + ol 0w sia, +u) v . (52)
H-R ¢

where S is the compliance matrix of the element material. u, and u; are the compatible part and incom-

patible part of the element displacement, respectively. fis the generalized body force that corresponds to the

last term in formula (33). ¢ is the stress, which can be assumed to be the sum of constant stress a. and

higher-order stress oy, 1.€.,

on B, n 00000 ¢O0 000 0](P5
on B, 0 E000O0O0O0O0TMKR OO gs

Jen |, ) B 00 &7 0000000 0 9

““You (Vg (Tlo0o 00000000 g]): (53)
o3 Bs 000004 0000¢O0f]|p
o1 Be 0000000 ¢000f]p

The above formula can be expressed in a simple form:
0= 0+ 0y = bbb+ buby = B+ oy ¢]{§} (54)

where ¢; and ¢y, are sixth-order square matrices, f; = [f:fs - fio)" and By = [Bisfra - Pus]"-
Based on the consistency condition of incompatible hybrid element, the optimized condition for hybrid
element is applied (Wu et al., 1987), i.e.,

du; ney dS = 0, (55)
ore

where 0V° is the element boundary and n is the outward normal vector of the element boundary. Substi-
tuting expressions (44) and (54) into Eq. (55) induces

8."MB, =0, (56)

where

M = N*T"[d)l ¢ ]dS = [M; Myl (57)

ore



H. Sun et al. | International Journal of Solids and Structures 38 (2001) 3007-3020 3015

w= [ [N 6+ NT (D10 ]ar.
; (58)
My = /V {(DN*)T% +N*T(DT¢U)]dV~

It is difficult to get the analytical form of M; and My. However, they can be calculated by numerical in-
tegration, and they are functions of the nodal coordinates of the element. From Eq. (56), there is

[ M MH]{ [[;111 } =0, (59)
py 1s expressed in terms of f5;. Then,

6 = 0.+ oy = B+ b, (60)
where

¢y = b1 — duMy ' M. (61)

For the hybrid element with incompatible displacement, special attention should be paid to the corre-
lation between all variables. Better performance could be obtained if the match condition of parameters can
be satisfied (Wu and Pian, 1997). Defining the number of each parameter as

n, = dim(g), (62)
n; = dim(4), (63)
ny = dim(B), (64)
n, = number of DOF of the rigid body. (65)

Then the match condition requires
ng =Ny +n, — ny. (66)

The proposed hybrid element obeys the above match condition and can therefore guarantee the best
performance.
Substituting formula (60) into Eq. (52), the Hellinger—Reissner variational principle is rewritten as

ﬁ(ac, On, Uy, U;) = / [ — % (6c + 61)" S(6c + 61) + (6. + 03)" (Du,) + o, (Du;) — f (u, +u;) |dV.

(67)

From the stagnation value condition of functional (67), the stiffness equation of the hybrid element can be
obtained.

5. Numerical results

In this paper, the S-2 glass-epoxy composite materials with the fiber volume fraction from 0% to 75% are
used in the numerical tests. The fundamental material properties are E; = 85.5 GPa, v; = 0.22 for the S-2
glass fiber, and E,, = 4.1 GPa, v, = 0.34 for the epoxy resin matrix.

The numerical results of mechanical properties achieved by using isoparametric element (denoted as iso),
incompatible element (denoted as inc) and hybrid element (denoted as hyb), as well as Mori-Tanaka
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method (denoted as M-T) and traditional rule-of-mixtures (denoted as rom) are shown in Figs. 3-8. A
comparison can now be made between theoretical and experimental results (Lee and Mykkanen, 1987).

For the longitudinal experimental tests, fiber stresses were determined from the rule of mixtures and the
measured fiber content in the specimen. These data were then averaged for all specimens. Stresses and
moduli at specific fiber contents were calculated from this single set of data by the rule of mixtures. Since
the test number was limitedly 31, the experimental points of major Poisson’s ratio in Fig. 7 show less
dependent of fiber volume fraction. For the transverse tests, not all properties were measured throughout
the fiber content range of 50-70 vol.%. However, properties not measured at a fiber content of interest were
obtained by statistically interpolating or extrapolating from regions, where data was available over a
sufficient range. For the shear tests, specimens were cut at +45° from a balanced-ply, 6-layer 0°/90°
winding. The +45°-tensile shear test was used to determine in-plane shear properties (Clements and Moore,
1979).

Fig. 3 illustrates that there is a difference between the numerical results by hyb, inc, iso and those by
M-T, rom. The numerical results by hyb, inc and iso show better agreement with the experimental result
than those by M-T and rom. Fig. 4 shows that the transverse moduli by hyb, inc and iso are closer to the
experimental result than those by M-T and rom. The numerical result by hyb is the fittest to the experi-
mental result. In Fig. 5, the numerical results by hyb, inc and iso are better than that by M-T. The similar
conclusion can be attained from Fig. 6. Figs. 7 and 8 illustrate major Poisson’s ratio and transverse shear
modulus with the variation of fiber volume fraction, respectively.
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o

3

=

o

c

=}
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Fiber Volume Fraction(%)

Fig. 3. The variations of longitudinal modulus with fiber volume fraction.
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Fig. 4. The variations of transverse modulus with fiber volume fraction.
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Fig. 5. The variations of shear modulus with fiber volume fraction.
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Fig. 6. The variations of minor Poisson’s ratio with fiber volume fraction.
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Fig. 7. The variations of major Poisson’s ratio with fiber volume fraction.
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Fig. 8. The variations of transverse shear modulus with fiber volume fraction.

The numerical results by hybrid stress element are generally closest to the experimental results. The
Mori-Tanaka method cannot give good results because Eshelby’s tensor is based on the inclusion in an
infinite matrix, which is of no reality in actual composite materials (Du and Wang, 1998).

6. Conclusions

The equivalent properties of composite materials with periodic microstructures are governed by a unit
cell problem when the length scale of the microstructure is short in comparison to the length of global body.

Cooperating with homogenization method, the incompatible element and hybrid element have been
developed to predict the mechanical behavior of composites. The incompatible element in this paper can
pass the patch test condition. The hybrid stress element is constructed, based upon the consistency con-
dition.

In contrast with the isoparametric displacement element, the incompatible element and hybrid element
can ameliorate the results. Generally speaking, the numerical result by the hybrid element is the best
comparing to the experimental result.

Further work based on the approach of multivariable finite element method proposed in this paper to
three-dimensional case is being conducted by the authors, and will then be extended to the investigation of
nonlinear performance of solids and structures, particularly the plasticity and fracture cases.
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